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A B S T R A C T

Recent research has shown that assimilating satellite soil moisture (SM) retrievals into the land surface models
(LSMs) improves simulations of land-atmosphere water and energy exchanges. With satellite SM retrievals be-
coming widely and continuously available, it is desirable to examine the impact of assimilating them into nu-
merical weather prediction models in order to improve numerical weather forecast skills. Based on the devel-
opment of the coupled system of National Centers for Environmental Prediction (NCEP)-Global Forecast System
(GFS) and National Aeronautics and Space Administration (NASA)-Land Information System (LIS) in this paper,
we designed an experiment to demonstrate the impacts of assimilating the Advanced Scatterometer (ASCAT) SM
data products on the weather forecasts of GFS. With respect to the surface air temperature analysis product of
National Oceanic and Atmospheric Administration (NOAA)-Climate Prediction Center (CPC) and CPC’s
morphing method-based precipitation data, improvement from the ASCAT SM assimilation for probabilities of
high quality forecasts can reach up to 1.7% for GFS precipitation, 3.1% for 2-meter minimum temperature, and
3.1% for 2-meter diurnal temperature range predictions, respectively. These results suggest that satellite SM data
assimilation could be beneficial for GFS numerical weather forecasts of NOAA NCEP.

1. Introduction

Soil moisture (SM) is an important variable for regional and global
numerical weather prediction models that impacts the energy and
water exchanges between land surface and the atmosphere (Koster
et al., 2004; Seneviratne et al., 2010; Zhan et al., 2012; Yin et al.,
2015c, 2016). Currently, a number of microwave satellite SM products
are operationally generated with certain accuracy (Naeimi et al., 2009;
Kerr et al., 2010; Jones et al., 2010; Entekhabi et al., 2010; Li et al.,
2010; Parinussa et al., 2014; Yin et al., 2014; Yin et al., 2015a,b). It is
thus desirable to examine the impacts of assimilating satellite SM re-
trievals into weather prediction models and in turn improve numerical
weather forecast skills.

Several global weather forecast centers are currently assimilating or
testing the assimilation of remotely-sensed SM observations. Ongoing
research at the European Centre for Medium-Range Weather Forecasts
has shown positive impacts from the assimilation of remote-sensing SM
data (Drusch and Viterbo, 2007; Scipal et al., 2008; de Rosnay et al.,

2013). Building on the Extended Kalman Filter and the offline Joint UK
Land Environment Simulator land surface model (LSM), a new land
data assimilation system was developed by the UK Met Office aiming to
correctly propagate surface information to deeper soil layers using re-
mote sensing observations (Dharssi et al., 2010). However, research
related to data assimilation of satellite SM at the National Centers for
Environmental Prediction (NCEP) of National Oceanic and Atmospheric
Administration (NOAA) in the US has only recently begun.

The Global Forecast System (GFS) of NCEP is an important nu-
merical weather prediction model that provides medium-range weather
forecasts. For each GFS run, a set of initial values of system state
variables including SM is required. For the SM state variable, the cur-
rent GFS version uses estimates that are provided by previous GFS
forecasts. Because of uncertainties associated with precipitation esti-
mates and other meteorological forcing data for the Noah LSM, initial
values used for the GFS runs may not represent the true SM informa-
tion, which may contribute to downstream errors in GFS forecasts. It is
thus desirable to maximize the impacts of satellite SM products in an
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advanced data assimilation system. Meanwhile, the NASA-LIS (Land
Information System) offers a framework to develop a generic sequential
data assimilation subsystem (Kumar et al., 2006, 2008). In particular,
the LIS includes effective tools such as the ensemble Kalman Filter
(EnKF) that is widely used for sequential assimilation of hydrologic
variables (Evensen, 1994; Burgers et al., 1998).

Several remote sensing SM products from passive and active mi-
crowave satellite sensors have been developed to address issues in the
in situ SM observations resulting from sparse spatial distributions.
Recent studies indicate that SM retrievals from Advanced Scatterometer
(ASCAT) on board the Meteorological Operation (MetOp) satellite
program (Bartalis et al., 2007) are comparable to passive SM retrievals
(Liu et al., 2011; Zeng et al., 2015). The ASCAT provides continuous
and reliable long-term SM service with retrievals from MetOp-A laun-
ched in October 2006, MetOp-B launched in September 2012 (Wagner
et al., 2013) and MetOp-C launched in November 2018. However, there
are typically large uncertainties in SM retrievals from densely vegetated
areas due to the robust impacts of vegetation structure and water
content. In particular, backscatter for active C-band sensors (such as
ASCAT) is impacted by diurnal variations in vegetation water content
more strongly than previously thought (Van Emmerik et al., 2015).

Therefore, we developed a coupled GFS-LIS system in this paper and
then evaluated the impacts of ASCAT SM assimilation on the numerical
weather forecasts from GFS over sparsely vegetated areas. The

descriptions of the GFS, LIS-Noah 2.7.1, and the structure of coupled
GFS-LIS system are briefly introduced in the next section. The EnKF-
based numerical experiment focused on assimilating the ASCAT SM
product into the developed GFS-LIS coupled system is documented in
Section 3. Descriptions of input data sources and methodology are
provided in Section 4. Based on comparisons with 2-meter minimum
temperature (Tmin), 2-meter maximum temperature (Tmax), and 2-
meter diurnal temperature range (DTR) from the NOAA-CPC (Climate
Prediction Center) surface air temperature analysis product and pre-
cipitation retrieved from the CPC’s morphing method (CMORPH), the
coupled verification of GFS forecast is shown in Section 5. Discussion
and a brief summary are then provided in Sections 6 and 7, respec-
tively.

2. Model descriptions

2.1. NCEP Global Forecast System (GFS)

The GFS operationally running at NOAA-NCEP is a three-dimen-
sional hydrostatic global spectral model. It uses the Global Data
Assimilation System (GDAS) to provide guess fields for the full fore-
casts. The GDAS runs for each cycle (00, 06, 12, and 18 UTC); however,
to save time and space in experiments, the GFS is initially set up to run
only for the 00 UTC cycle. In this paper, the GFS model version T670 is
run at T254 spatial resolution that is about 35 km in Gaussian projec-
tion (grid dimensions: 1344 at longitude by 672 at latitude). The GFS
produced 3-hour forecasts 168 h in advance during the May 16–30,
2014 time period. The vertical was divided into 47 layers with the first
37 layers ranging from 1000mb to 100mb with 25mb intervals and the
following 10 layers set as 70mb, 50mb, 30mb, 20mb, 10mb, 7mb,
5mb, 3mb, 2mb, and 1mb.

2.2. LIS-Noah land surface model

LIS integrates the use of ground and satellite observations with well-
documented LSMs and advanced tools to accurately characterize land
surface states and fluxes (Kumar et al., 2006, 2008). To match the LSM
used in GFS T670-254, the LIS-Noah 2.7.1 model was used in this paper.

The Noah LSM is a one-dimensional soil–vegetation–atmosphere
transfer model that has four soil layers with thicknesses of 10 cm,
30 cm, 60 cm and 100 cm from the surface (Ek et al., 2003). The first
three layers are for estimations in non-forested regions while the last
soil layer is for simulations in forested areas (Ek et al., 2003). Based on

Fig. 1. Steps of the GFS and the coupled GFS-LIS system. The acronym indicates initial conditions.

Table 1
Perturbation parameters for meteorological forcing inputs and for state vari-
ables. The acronyms P, SW, LW and SM indicate precipitation, downward short-
wave, long-wave radiation and soil moisture, respectively.

Perturbation type Std dev Cross correlation for forcing variable
perturbations

P SW LW

P 0.5 (mm) 1.0 −0.8 0.5
SW 0.3 (Wm−2) −0.8 1.0 −0.5
LW 50 (Wm−2) 0.5 −0.5 1.0
Perturbation type Std dev Cross correlation for forcing variable

perturbations
SM1 SM1 SM1 SM4

SM1 (0–10 cm) 6.0× 10−3 m3m−3 1.0 0.6 0.4 0.2
SM2 (10–30 cm) 1.1× 10−4 m3m−3 0.6 1.0 0.6 0.4
SM3 (30–60 cm) 6.0× 10−5 m3m−3 0.4 0.6 1.0 0.6
SM4 (60–100 cm) 4.0× 10−5 m3m−3 0.2 0.4 0.6 1.0
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layer-based heat diffusion, standard diffusion, and gravity drainage
equations, the Noah LSM is able to model dynamics of SM and soil
temperature (Ek et al., 2003; Reichle et al., 2010). In this paper, the LIS-
Noah 2.7.1 model was spun up by cycling 3 times through the period
from 1 January 2008 to 30 April 2014. Simulations for each case were
conducted during the May 1–31, 2014 period with half-hour time-step
inputs and daily outputs at 25 km resolution. Specifically, the soil
temperature and SM from LIS-Noah 2.7.1 outputs for the May 1–31,
2014 period were placed into the GFS initial condition files.

2.3. Coupled GFS-LIS system

The LIS-Noah 2.7.1 outputs with and without benefits from SM as-
similation were remapped from the lat/lon projection at 25 km spatial
resolution to a Gaussian projection with respect to the spatial resolution
(~35 km) of GFS model. LIS was set up to run in parallel with each GFS
simulation, providing updated initial land surface conditions for each
00Z GFS run. There the soil temperature and SM fields from LIS-Noah
were placed into the GFS initial condition files (Fig. 1). The resulting
analysis and forecast fields were finally converted to 3-hour outputs at
25 km spatial resolution in lat/lon projection by the “post” processor in
the GFS model (Fig. 1).

3. Methodology of the experiment

3.1. EnKF-based SM data assimilation

The EnKF has been widely used in sequential SM data assimilation
(Evensen, 1994; Burgers et al., 1998). Based on sequential Bayesian
filtering and Monte Carlo approximation, ensemble forecasts and state
variables are alternately updated in EnKF (Reichle et al., 2002). For-
ward propagation of ensemble model states is conducted using the LSM
when EnKF runs in the ensemble forecast step. In the EnKF, error var-
iances for forecast and measurement estimates vary in time and depend
on the dynamics of the previous updates. The Kalman gain relates to
forecast error covariance. As in the LIS examples (Kumar et al., 2009), a
3% constant value was used to define error variances.

3.2. Experiment design

Based on the GFS-LIS coupled system, we designed a set of nu-
merical experiments to investigate the impacts of satellite SM assim-
ilation on numerical weather prediction. The ASCAT SM is expected to
perform reasonably over the sparsely vegetated areas because dense
forests and shrubs are generally opaque to C-band radar (Wagner et al.,
2013). Specifically, lower backscatter variations (< 2 dB) may result in
great SM retrieval uncertainties over tropical forests and densely ve-
getated regions (Wagner et al., 2013), where average green vegetation
fraction (GVF) climatologies are generally larger than 0.5 (Jiang et al.,
2010). LIS provides monthly Advanced Very High Resolution Radio-
meter (AVHRR)-Normalized Difference Vegetation Index (NDVI)-based
GVF maps. This study is focused on the areas where the GVF values are
less than 0.5 (Jiang et al., 2010) over the global domain during the May

16 to 30, 2014 period.
The basic structure of the experiments is as follows: 1) The first

simulation, the original GFS (ORG) run, is used to emphasize GFS T670-
254 original performance without benefits of data assimilation and
modifications on land surface parameters (land cover, GVF, soil texture,
and slope). 2) The second simulation, the open-loop (OLP) run, uses a
single realization with replacement of land surface parameters in-
cluding land cover, GVF, soil texture, and slope maps consistent with
those used in LIS-Noah 2.7.1 LSM. This simulation is chosen to assess
the influences of different land surface parameters on GFS forecasts,
and in turn to highlight the impact of satellite SM data assimilation. 3)
The third simulation, the data assimilation (DA) run, is focused on as-
similating the ASCAT SM product into the GFS-LIS coupled system
using the EnKF. Because the land surface parameters in GFS are re-
placed as stated in the OLP case, the differences of the model results
between DA and OLP cases are based only on the impact of the ASCAT
SM data assimilation in the DA case.

The EnKF is a Monte Carlo method that requires an ensemble, and
thus perturbations are added to make ensemble members differ from
each other (Kumar et al., 2009). The input forcing data (precipitation,
downward long- and short-wave radiation) of the Noah model are
perturbed as described in Table 1 (Kumar et al., 2009). The implicit
assumption is that a systematic bias in model output should not be
caused by adding zero-mean Gaussian noise in the EnKF analysis step
(Ryu et al., 2008). The variance values in the NASA LIS were manually
adjusted to make the normalized innovations satisfy the requirement of
normal distribution for optimal simulations. Ensemble size of EnKF was
set as, which is the optimal ensemble size in a sequential SM assim-
ilation system (Yin et al., 2015a). The benefits of assimilating the
ASCAT SM product are expected to be highlighted by the suboptimal
forcing and initialization used in the DA case.

4. Data and methodology

4.1. ASCAT SM product

ASCAT is onboard the polar orbiting MetOp-A, MetOp-B, and
MetOp-C satellites. It is a real aperture radar using vertically polarized
antennas. The nominal spatial resolution of the C-band (5.255 GHz)
ASCAT is 50 km, and its experimental resolution is 25 km. The morning
overpass time of the ASCAT occurs at 09:30 local time, and the evening
overpass occurs at 21:30 local time. The ASCAT SM product used in this
paper is developed using a time series-based change detection method
at the Vienna University of Technology (Wagner et al., 1999; Naeimi
et al., 2009). It yields the surface degree of saturation from 0 to 100%,
representing the driest and wettest observations, respectively (Bartalis
et al., 2007).

In this paper we employed the daily 25 km ASCAT SM data sets
during 2008–2014 period over sparse vegetation areas where GVF va-
lues are lower than 0.5 and scaled them to the same SM climatology of
the Noah 2.7.1 LSM using linear transformation that is represented as
(Koster et al., 2009):

Table 2
Rainfall forecast skill scores according to 3-hourly rainfall intensity-based classification.

CPC 25 km precipitation products Predicted Rainfall

Non-precipitation Little rain Moderate Rain Heavy Rain Extreme Rain
0mm 0–3mm 3.1–12mm 12.1–48mm >48mm

Non-precipitation 0mm 5 3 2 1 0
Little rain 0–3mm 3 5 3 2 1
Moderate Rain 3.1–12mm 2 3 5 3 2
Heavy Rain 12.1–48mm 1 3 3 5 3
Extreme Rain > 48mm 0 1 2 3 5
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= + −μ μ σ
σ

Φ (Φ )ASCAT Noah Noah ASCAT ASCAT
Noah

AsCAT
/ (1)

where ΦASCAT/Noah is the re-scaled ASCAT SM retrieval and ΦASCAT is the
raw ASCAT SM retrieval. μNoah (σNoah) and μASCAT (σASCAT) are the
averaged SM (the standard deviation) for the LIS-Noah 2.7.1 model and
the ASCAT SM estimations over the 2008–2014 period, respectively.

4.2. NOAA-CPC surface air temperature analysis product

In support of various purposes, including climate monitoring, fore-
cast verification, and studies on climate change and on the development
of regional-to-global scale Earth system models, NOAA-CPC has de-
veloped an operational global daily land-only 2-meter temperature
analysis at 50 km spatial resolution (ftp://ftp.cpc.ncep.noaa.gov/

Fig. 2. With respect to the 50 km CPC-observations-based products, RMSE differences (in K) in predicted 2-meter minimum temperature (Tmin) for 24-, 48-, 72-, 96-,
120-, 144-forecasthour (FH) over the May 16–30, 2014 period: (a) ORG minus OLP; and (b) OLP minus DA. The blue (red) color indicates improvement (de-
gradation), while grey color means insignificant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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precip/wd52ws/global_temp). The analysis is based on ~6000 Global
Telecommunication System stations around the global and covers the
1979-present period. In this paper, the daily Tmin, Tmax, and DTR da-
tasets over the May 15-June 5, 2016 period were used to assess the GFS
forecasts. The GFS-LIS coupled system-based Tmin and Tmax estimations
were resampled from 3-hour 25 km to daily 50 km to match the tem-
poral and spatial resolution of the NOAA-CPC 2-meter temperature
analysis.

4.3. CMORPH precipitation product

The Climate Prediction Center morphing method (CMORPH) in-
corporates half-hourly interval, geostationary satellite-based high
quality precipitation estimates derived from passive microwave data.
The current CMORPH product uses motion vectors derived from the
DMSP 13, 14 & 15 (SSM/I), the NOAA-15, 16, 17 & 18 (AMSU-B), and
AMSR-E and TMI aboard NASA's Aqua and TRMM spacecraft (Joyce
et al., 2004). To generate spatially and temporally complete micro-
wave-derived precipitation analyses, the precipitation intensity and
shape are modified between microwave sensor scans using a time-
weighted linear interpolation (Joyce et al., 2004). The 3-hourly 25 km
CMORPH datasets were retrieved from May 16 to June 5, 2016 to assess
GFS precipitation predictions in this paper.

4.4. Performance measures

4.4.1. Rainfall forecast skill scores
Many skill scores have been used to evaluate the quality of rainfall

forecast, but a directive is an objective method of converting the pre-
dicted probability distribution into a discrete number or category

(Gringorten, 1951; Vislocky and Young, 1988). In this study, rainfall
events were classified as non-precipitation, little rain, moderate rain,
heavy rain or extreme rain on the basis of the thresholds of 3-hourly
intensity in Table 2. And the rainfall forecast skill scores (S) were then
ranged from 0 to 5 with indicating from the worst to the best prediction
performance (Vislocky and Young, 1988) with respect to the CMORPH
precipitation product. Thus, estimations on the forecasting accuracy
(FA) of the predicted non-precipitation and precipitation for i, j grid
location are then expressed as

= ×i j
i j

FA( , )
S( , )

5.0
100%

(2)

4.4.2. Root mean square error
Root mean square error (RMSE) is a widely applied measure of the

differences between the model and observed variables. Temperature
and precipitation forecasts are very important to weather warnings and
human activity. The predicted precipitation, Tmin, Tmax, and DTR are
thus verified using the observations-based products in this work.
Specifically, the 3-hourly model 25 km 2-meter temperature simula-
tions at Coordinated Universal (UTC) time are resampled as daily 50 km
at local time. Then the RMSE is used to evaluate the predicted pre-
cipitation with respect to the CMORPH product and verify the GFS Tmin,
Tmax and DTR forecasts with respect to the NOAA-CPC 2-meter tem-
perature analysis.

5. GFS forecast verification

With respect to the 50 km NOAA-CPC surface air temperature ana-
lysis product, Fig. 2 shows RMSE differences (in Unit: K) in predicted

Fig. 3. With respect to the NOAA-CPC surface air temperature analysis product, the study domain-averaged frequency probability as a function of RMSE for the 24-,
48-, 72-, 96-, 120- and 144-FH predicted 2-meter minimum temperature (Tmin) over the May 16–30, 2014 period.
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Tmin for 24-, 48-, 72-, 96-, 120- and 144-forecast hour (FH) over 16–30
May 2014 period. The blue color indicates improvement while the red
color means degradation. The forecasting results for the 6 FHs present
similar patterns. The slight differences in the predicted Tmin between
ORG and OLP cases can be found in Fig. 2a with improvements over the
small areas located in the northwestern China and degradations dis-
tributed in the northeastern Canada. However, this situation can be

clearly improved by DA case in Fig. 2b. Relative to the OLP run, the GFS
Tmin predictions exhibited overwhelmingly positive responses to DA run
on almost the entire study domain with some improvements larger than
2 K in Central Australia, southern India, and South Africa (Fig. 2b),
whereas the slight degradations are mainly located over the Horn of
Africa.

With respect to the NOAA-CPC surface air temperature analysis

Fig. 4. With respect to the 50 km NOAA-CPC surface air temperature analysis product, RMSE differences (in Unit: K) in predicted 2-meter diurnal temperature range
(DTR) for 24-, 48-, 72-, 96-, 120-, 144-FH over the May 16–30, 2014 period: (a) ORG minus OLP; and (b) OLP minus DA. The blue (red) color indicates improvement
(degradation), while grey color indicates insignificant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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product, Fig. 3 shows statistical results for the RMSE values of the 24-,
48-, 72-, 96-, 120- and 144-FH Tmin forecasts over the May 16–30, 2014
period. Curves shifting toward the left indicate improvements in re-
ducing the probability of large RMSE while curves shifting towards the
right indicate degradations. Compared to the ORG case, the accumu-
lative probabilities of less than 3 K RMSE values for 24-, 48-, 72-, 96-,
120- and 144-FH Tmin predictions are slightly improved by 0.1%, 0.4%,
0.9%, 1.1%, 1.2%, and 0.9% by OLP case, respectively. Relative to OLP
run, DA case presents a left shifting tendency with increased probability
of providing lower RMSE values. With benefits of ASCAT SM assim-
ilation, the accumulative probabilities of less than 3 K RMSE values for
the OLP run are increased by 1.3%, 1.0%, 0.8%, 0.7%, 0.9%, and 0.6%
for 24-, 48-, 72-, 96-, 120- and 144-FH Tmin predictions, respectively.

Similar to Fig. 2, with respect to the 50 km NOAA-CPC surface air
temperature analysis product, Fig. 4 denotes RMSE differences in pre-
dicted DTR for 24-, 48-, 72-, 96-, 120- and 144-FH from May 16 to 30,
2014. The blue color shading shows improvement, yet the red color
shading indicates degradation. The large degradations for the OLP case
are observed in Central Asia, northeastern Canada, and western South
America (Fig. 4a). The DA case yields significant improvement on DTR
forecasts across the study domain in comparison to the OLP case by
exhibiting larger than 3 K improvements in west U.S., central Australia,
South Africa, and central Asia (Fig. 4b). The different patterns in Fig. 4b
indicate that the DA case successfully forecasts DTR in comparison to
OLP run and shows significant improvements over sparsely vegetated
areas.

With respect to the NOAA-CPC surface air temperature analysis
product, Fig. 5 shows the study domain-averaged frequency probability
as a function of RMSE values for DTR during the May 16–30, 2014
period. The statistical density function of frequency probability shifting
toward the left indicates improvement while shifts toward the right

indicate degradation. Relative to the ORG case, the OLP case exhibits
marginal influences on DTR forecasts from 24- to 144-FH, whereas the
DA case performs better with significantly shifting toward the left. The
OLP run shows slight degradations over the ORG case and reductions in
accumulative probabilities of RMSE less than 4 K for 24-, 48-, 72-, 96-,
120- and 144-FH DTR forecasts by −0.5%, −0.4%, −0.4%, −0.2%,
−0.3% and −0.4%, respectively. Compared to the OLP run, the ac-
cumulative probabilities of RMSE less than 4 K for 24-, 48-, 72-, 96-,
120- and 144-FH DTR forecasts are enhanced by 2.8%, 2.9%, 2.8%,
2.6%, 2.8%, 3.1% with benefits of ASCAT SM assimilation.

Based on the rainfall forecast skill scores in Table 1 and forecast
accuracy computed according to Eq. (2), differences in predicted rain-
fall accuracy (in %) for 24-, 48-, 72-, 96-, 120- and 144-FH over the
16–30 May 2014 period are shown in Fig. 6. The blue color shading
means improvement; the red color shading means degradation. Com-
pared to the ORG case, the OLP run presents a modest performance in
northwestern Sahara, Middle East, Canada, and northwestern China,
but shows marginal improvements in northeast China and western U.S.
(Fig. 6a). The pattern differences between OLP and DA cases demon-
strate that the DA case is successful in the northern China and north-
western Sahara with showing improvements larger than 6%, whereas
the degradations can be seen in the north India, east Sahara, and South
Africa (Fig. 6b).

With respect to the 25 km CMORPH precipitation product, Fig. 7
illustrates study domain-averaged frequency probability as a function of
forecasting accuracy for the 24-, 48-, 72-, 96-, 120- and 144-hour pre-
cipitation and non-precipitation predictions from May 16 to 30, 2014.
Contrary to Figs. 3 and 5, the statistical density function of frequency
probability shifting towards the left indicates degraded and shifting
towards the right indiciates degradation. For the 24- and 48-hour pre-
cipitation forecasts, the OLP case demonstrates great improvements

Fig. 5. With respect to the NOAA-CPC surface air temperature analysis product, the domain-averaged frequency probability as a function of RMSE for the predicted
2-meter diurnal temperature range (DTR) for 24-, 48-, 72-, 96-, 120- and 144-FH from May 16 to 30, 2014.
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over the ORG case, while there are slight differences between OLP and
DA cases. However, the DA case yields greater improvements for 72-,
96-, 120-, and 144-hour forecasts in comparison to the OLP case. Spe-
cifically, over the ORG case, the OLP case can enhance the accumula-
tive probabilities of high quality precipitation forecasts, which are de-
fined as the forecasts that have larger than 80% accuracy, by 1.4%,
2.2%, 2.7%, 1.6%, 1.8% and 1.8% for 24-, 48-, 72-, 96-, 120- and 144-
FH, respectively. With benefits of assimilating ASCAT SM retrievals, the

improvements for 24-, 48-, 72-, 96-, 120- and 144-FH are −0.4%,
−0.4%, 0.4%, 3.1%, 0.8% and 2.9% in comparison with the OLP run,
respectively.

6. Discussion

This work examined the impact of EnKF-based ASCAT SM assim-
ilation on the forecasts of the NOAA NCEP GFS model over sparsely

Fig. 6. With respect to the 25 km CMORPH precipitation product, differences in predicted rainfall accuracy (in Unit: %) for 24-, 48-, 72-, 96-, 120-, 144-FH over the
May 16–30, 2014 period: (a) ORG minus OLP; and (b) OLP minus DA. The blue (red) color indicates improvement (degradation), while grey color indicates
insignificant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. With respect to 25 km CMORPH precipitation product, the study domain-averaged frequency probability as a function of forecasting accuracy for the
predicted precipitation/non-precipitation for 24-, 48-, 72-, 96-, 120- and 144-FH from May 16 to 30, 2014. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. With respect to 50 km NOAA-CPC surface air temperature analysis product, RMSE differences (OLP minus DA, in Unit: K) in predicted 2-meter maximum
temperature (Tmax) for 24-, 48-, 72-, 96-, 120-, 144-FH over the May 16–30, 2014 period. The blue (red) color indicates improvement (degradation), while grey color
indicates insignificant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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vegetated areas (GVF less than 0.5). The results presented in Section 5
indicate that the GFS model performs better with benefits of assim-
ilating ASCAT SM data into the coupled GFS-LIS system. The GFS-LIS
coupled system produced 3-hour forecasts for 168-hr in advance for
each day over a biweekly period, thus making the sample size 112 (8
three-hourly forecasts/day×14-day) in Figs. 2, 4, 6 and 8. The sta-
tistical results shown in Figs. 3, 5 and 7 have huge sample sizes (roughly
108) with representation of the study domain-averaged RMSE patterns.
The strong consistency of results implies that the results in this paper
are qualitatively stable and likely represent a longer analysis period.
However, several limitations should be considered in interpreting this
result when applying global remote sensing SM data products in nu-
merical weather prediction models. These limitations are discussed
below.

6.1. Physical considerations

In this paper, clear improvements of ASCAT SM assimilation on GFS
Tmin and DTR forecasts over Sahara areas can be found in Figs. 2 and 4.
However, the obvious degradations of assimilating ASCAT SM product
on Tmax predictions in the Sahara areas are exhibited in Fig. 8. On one
hand, the results show that the ASCAT retrievals should include useful
information in their seasonal cycle and anomaly signals over sand
areas, which can utilize the model SM increments to correct Tmin and
DTR simulations; on the other hand, however, further improvements on
ASCAT SM product over sand areas are expected to address noise re-
duction.

Previous studies indicate that the weather forecast model generally
performs better at nighttime than daytime due to the benefits of ASCAT
SM assimilation (Dharssi et al., 2011; Schneider et al., 2014); the results
in this paper demonstrated this very clearly. The non-hydraulic equi-
librium of the soil may lead to decoupling occurrence during the day-
time (Leroux et al., 2014) while the remotely sensed SM retrievals are
generally closer to the ground measurements during the nighttime
(Albergel et al., 2009; Leroux et al., 2014). Thus ASCAT SM data of
descending orbits (a.m) perform better than that of ascending orbits
(p.m) (Wagner et al., 1999; Albergel et al., 2009).

Additionally, the daily ASCAT SM product was assimilated into the
LIS-Noah model at 00Z of each day, and then LIS was set up to run in
parallel with each GFS simulation, providing updated initial land sur-
face condition for each 00Z GFS run (Fig. 1). There, the soil tempera-
ture and SM fields from LIS/Noah were placed into the GFS initial
condition files. Benefits of assimilating the ASCAT SM product were
thus directly used for the first 6-hour GDAS guess cycle and the Tmin

generally showed during the 00Z–06Z time. The Tmax generally showed
during the 12Z–18Z time during the third GDAS cycle runs. Positive
information with benefits of data assimilation might be reduced when
propagating from the first GDAS cycle to the third GDAS cycle. Mean-
while, model uncertainties generally tend to increase in the long term.
However, the significant improvements on Tmin and DTR forecasts over
the global domain potentially overshadow the degradations on Tmax

estimations in the Sahara region.

6.2. Impacts of land surface parameters

In Noah LSM, vegetation information from land cover and GVF di-
rectly affects energy and water balances (Chen and Dudhia, 2001; Yin
et al., 2015c, 2016). And the hydraulic conductivity in Noah model is
associated with soil variables including soil texture and slop (Chen and
Dudhia, 2001; Ek et al., 2003). Due to the differences of the land surface
parameters including land cover, GVF, soil texture, and slope, there are
distinct differences in forecasts between the ORG and OLP cases. The
OLP and DA cases are thus driven by the same land surface parameters
to ensure the model output differences only come from turning on/off
the ASCAT SM data assimilation.

6.3. Additional future work

The current operational GFS version T1534 at NCEP is a global
numerical weather prediction system at a base horizontal resolution of
~12 km (grid dimensions: 3072 at longitude by 1536 at latitude in
Gaussian projection), which is higher than the T670-254 used in this
paper, but their dynamical cores and mathematical processes of pro-
ducing forecast outputs are consistent. The operational GFS T1534
performance is thus expected to be improved with the benefits of
ASCAT SM data assimilation. However, the revisit time of ASCAT is
2–3 days. Compared to the ASCAT, Soil Moisture Operational Products
System (SMOPS) developed at NOAA/NESDIS provides a near real time
operational global blend of all available microwave soil moisture re-
trievals on a daily basis (Yin et al., 2015a, 2019). Building on the
reasonable quality control of the blended SM retrievals (Yin et al.,
2014), it can be expected to extend the improvements on GFS model
performance from sparse vegetation areas to the entire global domain
with benefits from the assimilation of the near real time SMOPS
blended SM data in near future.

7. Conclusions

With the development of the coupled GFS-LIS system in this paper,
three numerical experiments were carried out to examine the impacts of
assimilating satellite soil moisture data into numerical weather pre-
diction models. The 2-meter minimum temperature and 2-meter diurnal
temperature range forecasts with benefits of ASCAT soil moisture as-
similation are closer to the observations with high quality forecast
probability, showing improvements of 1.7% and 3.1%, respectively.
Positive impacts of assimilating ASCAT soil moisture product on pre-
cipitation predictions are also found with the study domain-averaged
probability of high quality forecasts improved as much as 3.1%. Based
on the results, assimilating remotely-sensed soil moisture observations
into GFS model is suggested for NCEP GFS forecast operations.
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